The HoloLens’ Potential Impact on Neurosurgery

hololensThe DiVE recently acquired the Microsoft HoloLens, which is a new technology that provides a mixed reality experience. The HoloLens provides new opportunities for creativity and innovation.

The HoloLens has the potential to expand and advance different professional fields because of its ability to combine the real world with the virtual world. The interdisciplinary nature of this technology is highlighted in the development of an application for neurosurgery.

Shervin Rahimpour, M.D., a third year neurosurgery resident at Duke Hospital, and Andrew Cutler, M.D., a second year neurosurgery resident at Duke Hospital teamed with faculty mentor and neurosurgeon, Dr. Patrick Codd, to develop an application that they hope will enhance brain navigation in surgery. As neurosurgeons, Rahimpour and Cutler are familiar with the challenges in performing surgery on the brain.

Rahimpour and Cutler were brainstorming about how to increase the accuracy and ease of neurosurgical procedures around the time when the HoloLens was being advertised and discussed. They saw the potential of the HoloLens to enhance neurosurgery and decided to explore the idea.

Rahimpour comments that neurosurgeons base much of what they do during bedside procedures on “landmarks of the head;” this is not as precise as it could be. To address this issue, they aim to create a virtual patient specific map of the brain. The map will then be projected through the HoloLens onto the patient’s head. This overlay will provide a more accurate navigational system for the brain. Accurately overlaying the virtual map on top of the brain is anticipated to be difficult, but not impossible.

One procedure that the application will enhance is the bedside placement of an external ventricular drain. With current approaches, the accuracy of this procedure is insufficient and very user dependent. The virtual map projected through the HoloLens should increase the accuracy of the procedure. The usage of the application in this procedure is expected to prove the concept of the project. Once proven effective, Rahimpour and Cutler hope that the application will be available to other neurosurgical procedures in need of augmented reality based navigational system.

The DiVE is happy to partner with Rahimpour and Cutler in developing this application. We are excited to see the implications that this new navigational system will have in the future.